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Abstract. The problem of diagonalizing a class of complicated matrices. to be called ultrametric 
matrices, is investigated. These matices appear at various stages in the description of disordered 
systems with many equilibrium phases by the technique of replica-symmetry breaking. The 
residual symmetry. remaining after the breaking of permutation symmetry between replicas, 
allows us to bring all ultrametric mabices to a block diagonal form by a common similarity 
transformation, A large number of these blocks are, in fact. of size 1 x 1, i.e. in a vast sector 
the transformation actually diagonalizes the matrix. In the other sectors we end up with blocks 
of size ( R  + 1) x ( R  + l), where R is the number of replica-symmetry-breang steps. These 
blocks wnnot be further reduced without giving more information. in addition to ulkametric 
symmetry, about the matrix. Simialr results for the inverse of a generic ulmmetic matrix are 
also derived. 

1. Introduction 

Low-temperature disordered systems often possess many equilibrium phases. The technique 
of replica-symmetry breaking (RSB) provides a theoretical framework in which these systems 
can be described analytically, starting from a microscopic basis. Discovered and developed 
in the theory of spin glasses [I], RSB has recently penetrated into a number of other problems, 
including the theory of random manifolds [2-4], random-field problems [5,6],  protein 
folding [7-91, vortex pinning [lo], etc. In each of these theories randomness is handled 
via the replica trick, and the multitude of equilibrium phases is captured by breaking the 
permutation symmetry between the replicas. As always, symmetry breaking means that the 
low-temperature solutions realize a particular subgroup of the underlying symmetry group 
of the theory, here of the permutation group. The proper choice of the subgroup proved 
to be a highly non-trivial task in the case of RSB. The succesful ansatz for the symmetry 
breaking pattern, proposed by Parisi originally in the context of spin glasses, turned out to 
embody a particular hierarchical organization of the equilibrium phases, usually referred to 
as ultrametricity [l]. 

The corresponding subgroup determines the structure not only of the order parameter, 
but also of all other quantities in the theory, like self-energies, propagators, etc. The 
structure imposed by this residual symmetry on quantities depending on two replica indices 
is by now widely known. The algebra of such quantities has been worked out by Parisi 
[ l l ]  with further results, most notably on the inversion problem, added by Mezard and 
Parisi [2]. At a certain stage of the development of RSB theories, however, one also has to 
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face more complicated objects, depending on three or four replica indices. The structure 
of these is much harder to grasp and their algebra is much more involved than that of the 
two-index quantities. Our purpose here is to analyse and exploit the structure imposed by 
ultametricity on four-index quantities. For reasons to become clear shortly, we shall call 
them ultrametric matrices and will be concerned, in particular, with their diagonalization 
and inversion. 

In order to keep the full generality of the results and thereby guarantee their applicability 
in any RSB theory, we shall not assume any properties other than those imposed by 
ultrametricity on these matrices. In this way we separate the analysis of the purely 
geometric aspects of RSB theories, which are common to all of them, from the treatment 
of other properties which are determined by more specific details of the particular 
systems. 

Also, we shall keep the number n of replicas a positive integer throughout this paper. 
The replica limit n -+ 0 is, of course, the most essential step of the replica method. It is also 
the source of mathematical ambiguities. The analysis of the consequences of ultrametric 
symmetry, however, does not depend on n, therefore we found it  useful to keep it finite. 
This way our analysis belongs to the realm of well established mathematics and the analytic 
continuation in n can be carried out at the latest stage, on the final results. 

The number R of replica-symmetry-breaking steps will also be considered a generic 
integer. Thus our results will be applicable in situations where only a single RSB step is 
needed, as well as in the case of fully fledged RSB with R --f CO. The results for this 
‘continuous’ case ( R  -+ CO, n -+ O), derived by a completely different method, have been 
published in [12]. 

Although almost trivial in principle, our analysis will, inevitably, be very complicated 
in actual details. It is clearly impossible to reproduce the often very lengthy calculations 
here, and we shall have to use the phrase ‘it can be shown’ frequently. What we mean 
at these points is that one can reproduce the results more easily than follow the lengthy 
proofs. A good strategy is to work out a simple special case (like that with R = 1) first; 
the induction is easy to spot in most cases. 

The plan of the paper is the following. In section 2 the definition of ultrametric 
matrices is presented together with the classification of their different matrix elements. 
Section 3 contains a detailed analysis of the non-orthogonal basis vectors of a similarity 
transformation which brings all ultrametric matrices to a block-diagonal form, In 
section 4 this block-diagonal form is expressed through some ‘kernels’, which facilitate 
the eigenvalue and inversion problem greatly. A complete list of matrix components 
versus kernels is also included in this section. Some technicalities are relegated to the 
appendix. 

2. Definition of a generic ultrametric matrix 

For the sake of definiteness we present our analysis in the language of spin glasses, the 
extension to other replica-symmetry-breaking theories is merely a matter of notation. The 
replica method yields the free-energy F of a long-range spin glass in the form of a functional, 
depending on a set Q~+R of order parameters: F = F(Q,J). The replica indices a, take 
integer values: a, ,6 = 1,2, . . . , n (for our present analysis the replica limit n + 0 need 
not be considered here). The order parameters are symmetric: qep = 48.. and (for Ising 
spins) the diagonal components are zero: Q~~ = 0. The number of independent order 
parameter components is thus i n (n  - I). The free energy is independent of the labetling 
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of the replicas, so F must be constructed from the algebraic invariants of the permutation 
group of n objects. Examples of such invariant combinations are 

The stationary values of the order-parameter components are determined by the equation 
of state: aF/aq,B = 0. There are 4n(n - 1) such equations. Depending on the parameters 
in F these equations may have solutions that are indentically zero, qUP = 0, VLY.,,~, or 
that have non-zero but identical off-diagonal components qWP = q ( l  - 6EP), or non-zero 
off-diagonal components that depend on the pair (LY, 8) of replica indices. The solutions of 
the last kind are said to be replica-symmeby-breaking (RSB) solutions and these are the ones 
that describe situations where many equilibrium states exist. Led by a number of formal 
considerations which later turned out to embody the ultrametric organization of these states, 
Parisi proposed a, by now standard, parametrization for the RSB solutions which we briefly 
recapitulate in order to fix notations. 

Firstly assume that n is not only an integer, but a very large one, with a large number 
of proper divisors. Let pt be one of these, itself a large number with many divisors, let 
one of them be p z ,  etc, up to p ~ .  It is useful to rename n as po. and add PR+] = 1 to the 
other end of the series. Now the n replicas are divided into n / p ~  boxes each containing p, 
replicas. The contents of each box are further subdivided into p , / p z  smaller boxes with 
p2 replicas in eacb etc, down to the smallest boxes with p~ replicas. The RSB solutions 
are supposed to be invariant WRT the permutations of replicas inside each of the smallest 
boxes of size PR, and also WRT the permutations of the size pi+] boxes inside each of the 
size p h  boxes for any k = 0, I ,  . . . , R - 1. Evidently, these permutations form a subgroup 
of the permutation group. This subgroup is the residual symmetry that remains after the 
breaking of replica symmetry. The ansatz for the order-parameter matrix corresponding 
to this residual symmetry is constructed as follows: the n x n (i.e. po x PO) matrix qmp is 
divided into blocks of size PI x pt, and a common value qo is assigned to all matrix elements 
outside the diagonal blocks. Next, the diagonal blocks are further divided into blocks of 
size p z  x p2, the value ql assigned to the matrix elements inside the diagonal blocks of 
size pl x pt but outside the diagonal blocks of size p2 x p2, etc, down to the innermost 
blocks of size PR x p ~ ,  where the matrix elements are qR except along the diagonal of the 
whole matrix where they are zero. Some formulae below (equations (32) and (34)) become 
meaningless whenever the ratio of two subsequent p’s is 2 or 3. These cases would require a 
separate discussion which we can safely omit here, since in practical applications these cases 
will never appear. For OUT present purposes we can stipulate pk/pk+~ > 3, k = 0, 1, . . . , R. 

The solution of the stationary condition 8F/aq,P = 0 is sought among the matrices 
which have the special form just described. This solution is a point in the f n ( n  - 1)- 
dimensional replica space, so it is, in fact, a vector. In the following, when we deal with 
genuine matrices acting on replica space. i.e. with quantities depending on two pairs of 
replica indices, we will actually call qup and similar quantities vectors. The association 
between the n x n symmetric matrix qap (with 4.. = 0) and the column vector lqog) is 
evident: one lists the matrix elements above the diagonal of qaB in any prescribed order 
(say, row by row) below each other. 

The representation of qup and other vectors of replica space by symmetric matrices 
remains, nevertheless, very useful, because it is much easier to display their special 
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structure in the matrix form. Therefore, we shall use this matrix representation for all 
vectors appearing in this paper. For later reference we note here that the scalar product 
of two vectors, Irwp) and lqmp) ,  is, in matrix language, half the trace of the product of the 
corresponding matrices: 

(raplqap) = f W q ) .  (1) 

We now introduce the concept of the overlap between replica indices that will play a 
central role in the following: the overlap between a' and ,6 is k (notation: U n ,6 = k )  if in 
the Parisi scheme qUp = q k .  The overlap ang defined in this way can be regarded as a kind 
of hierarchical distance between'replicas a and j3, its values ranging from 0 (corresponding 
to the largest off-diagonal blocks of size p~ x p l )  to R f 1 (corresponding to the diagonal, 

It is evident that any quantity f constructed of the q's and depending on only two 
replica indices (such as fa# = Cyqay4yp, for example) only depends on their overlap: 

The metric generated by the overlaps is, by construction, ultrametric: whichever 
way we choose three replicas a',p,y, either all three of their overlaps are the same 
(U n ,6 = a n y = ,6 n y) .  or one (say a n p )  is larger than the other two, but then 
these are equal (a' n ,6 

Furthermore, it also follows that any quantity f built of the q ' s  and depending on three 
replica indices, faby ,  depends only on the overlaps a n  @, a' r l  y ,  ,6 n y.  and since of these 
at most two can be different, f& is, in fact, a function of only two variables, e.g. of a' nj3 
and of the larger of the other two: 

a = B ) .  

faa = f ( u  n B ) .  

IY n y = ,6 n y ) .  

In the following we will also have to consider quantities depending on four replica 
indices, coming in two pairs: f&,a.ya. A little reflection shows that such a quantity can 
always be parametrized as follows: 

Admittedly, this parametrization is less than perfect. Firstly, ultrametricity implies that 
of the six possible overlaps between U, .5, y and 6 at'most three can be different, which 
corresponds to the simple geometric fact that the edges of a tetrahedron having equilateral 
or isosceles faces can have at most three different lengths. Therefore, of the four variables 
on the RHS of (3) at least two are the same. The resulting redundancy is the price we 
pay for the symmetry of the notation. Secondly, in all practical applications fup.ya,rs is 
symmetric WRT exchanging a' and ,3 or y and S and also WRT exchanging the two pairs: 
fap.ys = fap.Sy = fpe.y6 = fy8,#p etc, and these symmetries are not manifestly reflected by 
the parametrization (3). We prefer keeping the consequences of these symmetries in mind 
rather than overcomplicating the notation. 

The choice between the various types of solutions of the equation of state (identically 
zero, or constant qn6, or replica-symmetry broken qcp) is based on stability considerations. 
In order to decide the stability of a given solutioh, one has to diagonalize the Hessian or 
(bare) self-energy matrix 8*F/aq,p&.7ya = M.p,y&. evaluated at the stationary point. M is 
the prime example of a quantity depending on two pairs of replica indices, so it can be 
parametrized as shown in (3). M is obviously symmetric WRT the exchange of the two 
pairs (a'@) and (y8). Since qap = qp. and qua = 0, M can be considered to depend on the 
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ordered pairs 01 < ,9 and y < 6 only, so it is a matrix of dimension in(n - 1) x fn(n  - I ) .  
A symmetric matrix of this size has, in general, in(. - l)[;n(n - 1) + I] independent 
elements. This number is greatly reduced by ultrametricity. Below we list all the different 
kinds of maeix elements which can appear. When doing so, we will relax the ordering 
of the indices of Mep,rs, and extend the definition to arbitrary combinations of the indices 
(except 01 = j3 and y = 6 )  so as to make M symmetric WRT exchanging 01 and g and/or y 
and 6,  MWp+.a = Map,by = Mpu.ys = Mp.,sy, in addition to the symmetry WRT exchanging 
the pairs (a@) and (y8).  This extension is motivated by convenience: when summations 
are to be performed on the indices of M the restrictions due to ordering can become very 
cumbersome. 

The matrix elements can be classified naturally in three categories. 

(i) Matrix elements ofthefirst kind. These are the diagonal elements M.p,.p, together with 
their variants Map,par Mp.,.p, etc. They depend on the overlap 01 n ,9 = i = 0,  1,2, . . . , R 
only. Under the parametrization (3) they are given by 

. .  
Mq.8 = M2t,,Rtl i = 0, 1, .. . , R .  (4) 

There are. in general, R+ 1 different matrix elements in this category (instead of $n(n - l ) ,  
the dimension of the matrix). 

(ii) Matrix elements ofthe second kind. These are off-diagonal, with one replica index in 
common between the two pairs. One example is M . B , ~ ~  which, together with its exchanged 
variants ( M a ~ . y u  etc), exhausts all possibilities. 

(a) 01 n g = 01 r l  y = i 6 ,9 n y = j = 0, 1 , .  . . , R. Then 

There are three cases: 

. .  
M?p..y = M?+,,j j ) i .  (5) 

Various exchanges of the replica indices either reproduce the same, or exchange the lower 
variables R + 1 and j .  (The parametrization (3) is such that M E  is always symmetric in 
k and 1.) 
(b) 01 n g  = ,9 n y = i < 01 n y  = j .  

M ~ ~ , ~ ~  = M Z ~ , ;  j > i .  (6) 

Exchanging replica indices in all possible ways reproduces either the same, or exchanges 
the lower variables, or exchanges i and j .  Thus 

According to (7). this is the same as (6) (rename i ct j ) .  

class. 

(iii) Matrix elements of rhe third kind 

It is easy to see that the number of different matrix elements is at most ( R  + 1)* in this 

These have four different replica indices, 
Considering all logically possible situations with ci < p, y < 6, ci < y ,  < 6 
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(corresponding to the matrix elements above the diagonal of M), we find six possible cases 
altogether. 

(a) (I n f3 = i ,  y n 6 = j ,  max(a n y ,  (I n S }  = max(g n y. g n6) = k with k < min{i, j ] .  
Then 

. .  
M,p+,s = M;:; = Mi;; (8) 

where the second equality follows from exchanging the two pairs ((I@) ++ (yS). 
(b) (I rl6 = i, y n S = j ,  max{ci n y ,  (I n 8) = max(p n y ,  g n 6 )  = k, j i k < i. Then 

(9) 

(c) arng = i ,  y ns = j ,  max{orn y.a! nS) = i ,  max{gn y. ,3nS]  = k ,  j < i < k .  Then 

r . j  j i  
MaO.vS = Mk,k = Mk;j. 

(t) (I n,6 = y n S  = i, max(a n y , u n S )  = k, max(j3 n y , p  n S )  = 1, i < min(k,I]. Then 

(13) I ,  
Mep,yS = Mh:! , 

In equations (8)-(13) the overlaps i, j ,  k, I can run through 0, 1 ,2 ,  . . . , R .  Considering the 
cases (a)<f) one can show that the number of different matrix elements of the third kind is 

If all the in(. - 1) independent order-parameter components were different, the matrix 
MmB,y6 would have of the order of n4 independent matrix elements. Parisi’s RSB scheme does 
not completely destroy the permutation symmetry of the replicas, however, it only reduces 
this symmetry to a particular subgroup of the group of permutations of n elements. It is 
this residual symmetry which is responsible for the tremendous reduction in the number of 
independent elements of the Hessian: instead of O(n4) we have, according to equations (4)- 
(13). only O ( R 3 )  different matrix elements, which, for large n, is exponentially small 
compared to n4, 

The particular structure described above has been displayed in the example of the 
Hessian of the long-range spin glass. Matrices with an identical structure appear in many 
RSB theories. We shall call these matrices ultrametric matrices. From this point on we shall 
disregard the derivation and meaning of M, and will focus solely on its symmetries. It 
will be seen that these symmetries allow one to construct an irreducible representation for 
ultrametric matrices in that all those which have the same block sizes PO, PI ,  . . . , p~ can be 
brought to a block-diagonal form by the same similarity transformation and that no further 
reduction is possible without providing further information on the matrix elements. It will 
also be seen that the conditions ultrametricity imposes upon M are stringent enough to 
actually yield a large number of the eigenvalues in closed form. We shall also look into the 
problem of inversion of ultrametric matrices and shall find again that a large number of the 

(R + 0 3 .  
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components of the inverse can be obtained i n  closed form. Some of the results we compile 
here are not new-they werc published by two of us some years ago in a very compact 
form [13]. In addition to re-phrasing them and providing some background material, we 
also present a number of new results. especially with regard to the inversion problem. As 
long as n is an integer with the sequence of divisors PI ,  p2,  . . . , p~ as described, the matrix 
M is a well defined mathematical object, and the problem of i t s  diagonalization belongs 
to the realm of standard mathematics. The present paper will be concerned with this well 
posed problem. At a certain point one will, however, have to consider the replica limit 
n -+ 0, together with the analytic continuation in all the pr’s and with the limit R --f 00, 

as proposed by Parisi [I]. These manipulations are, at the present time, of a purely formal 
character, certainly beyond the limits of well established mathematics. After all these 
dubious steps one arrives at the problem of the diagonalization of an integral operator with 
a set of particular symmetries. The results we get in the discrete case can all be easily 
transcribed onto this new, continuous problem. 

3. The new basis 

In the previous section the components of an ultrametric mamx M , p . y ~  have been 
given in the Cartesian coordinate system spanned by the basis vectors I@, U), (w.  U )  = 
( I ,  2). (1.3), . . . . (n - I ,  n), which, similarly to the order parameter qo8, can be represented 
by symmetric n x n matrices. Their matrix elements are 

In order to bring M to a block-diagonal form, we have to go over into a new basis. 
The new set of basis vectors can be inferred from the general structure of the eigenvectors 
described in [13] and, like those, can be naturally classified in three families. 

The firstfamily. 
The first family of basis vectors consists of R+ 1 vectors labelled by i = 0, 1, . . . , R which, 
when represented by quadratic matrices, have identical, non-zero elements on the ith level 
of the Parisi hierarchy and zeros everywhere else: 

where the la, p ) ’ s  are the Cartesian unit vectors defined in (14). The meaning of the first 
label (0) will become clear shortly. 

The first family basis vectors form an ( R  + I)-dimensional orthonormal set in replica 
space. The difference pi - p , + ~  in the normalization factor will appear so often in the 
following that it is worth giving it a name: 

(16) 

A straightforward but tedious calculation shows that the subspace spanned by the first 
family basis vectors is closed under the action of an ultrametric matrix. Therefore the linear 
combination 

pi - pi+, = Si i = 0. 1,. . . , R .  
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is an eigenvector of M, provided the amplitudes fo(i) are appropriately chosen. The 
conditions for these amplitudes (i.e. the eigenvalue equations) will be written up in the next 
section. Evidently, there will be R + 1 possible choices for the amplitudes, corresponding 
to R + 1 eigenvalues A, (O), m = 0. 1, . . . , R. In the case of a generic matrix M with no 
symmetries other than those dictated by ultrametricity, all these eigenvalues will be singlets, 
their multiplicity p(0) = 1, and the eigenvectors orthogonal. In the following we shall often 
refer to the first family as the longitudinal or L family. 

The second family. 
The second family will be broken down into several subfamilies, to be labelled by an 
index k = 1,2, . . . , R + 1. The first family is, in several respects, nothing but the case 
corresponding to k = 0, which is why we used the label 0 in addition to i. The structure 
of the second family basis vectors is easiest to grasp graphically, so we define them in a 
series of figures. The vectors belonging to the k = 1 subfamily are shown in figures I and 2. 
(Although, as we have already mentioned, the ratios of subsequent p’s must never be 2 or 3 
in order to prevent the figures from occupying an excessive space, here and in almost all the 
figures to follow we have to illustrate the structure of eigenvectors by figures where some 
of these ratios are 3.) Consider the vectors shown in figure 1. They only have non-zero 
components on the zeroth level of the Parisi hierarchy, but now not all these components 
are identical: they take two different values, A and 8,  arranged as shown in the figure. We 
shall denote these vectors as 11; 0; b) ,  where the first label is the value of k ,  the second 
is that level of the Parisi hierarchy where the vector has non-zero elements, and the third, 
b = I ,  2, . . . , n / p , ,  shows which column and row of blocks is distinguished, i.e. which 
blocks have matrix elements E .  

Now consider the sum of these vectors, x:2 (1; 0; b ) .  The distinction between the 
different blocks will obviously disappear in the sum, so it will be proportional to 10 0) of 
the first family. However, we want to make each of the second family vectors orthogonal 
to the first family, so we have to choose the vectnr components A and B so as to make the 
above sum vanish. If we choose, say, A = 1 then B must be 

E = -  2 - -  , (18) 2 1 ( 3 
With this choice the 11; 0 b)  vectors are all orthogonal to the first family and 

9 , I ;  0 b)  = 0 .  (1% 
h=l 

Figure 1. The vectors lk = I ,  i = 0. b) .  The label b = 1.2, . . . . n /p i  shows which column 
and row of pi x p~ blacks is distinguished. Identical shading means identical components. A 
blank means zero. 
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The evident symmetry between these vectors makes it obvious that pairwise they make the 
same angle which, together with (19). means that they span an ( n / p l  - 1)-dimensional 
hypertetrahedron. It also follows that there is no further linear relationship between them, 
so if we discard one, say 11; 0; n/pl) ,  we will be left with 

p(1) = n (;fr - i) (20) 

linearly independent basis vectors. These will not be normalized, nor orthogonal, however. 
It would be an easy task to construct an orthonormal set out of them, but it would destroy 
their symmetry. We find it slightly more convenient to work with a bi-orthogonal set. For 
the same reason we need not wony about normalization. It is an elementary exercise to 
show that the set 

n 4p1 ( 1  1; 0;  b)  - [ I ;  0;  k)) b = 1.2, . . . , - - 1 (21) 
nz(n - 2 ~ 1 )  PI 

is hi-orthogonal to the set 11; 0 b). 
We now proceed, still within the k = 1 subfamily, to the next level of the Parisi 

hierarchy. The vectors Ik = 1; i = 1; b)  are shown in figure 2. Similarly to the previous 
case, orthogonality to the first family vector IO; 1) demands 

2 11; 1;b) = O  
b= I 

which is satisfied if the vector components are chosen as 

n 

PI 
A = l  B = l - - .  (22) 

Then the vectors 11; 1; b)  span a p(l)-dimensional hypertetrahearon again, with the 
associated bi-orthogonal set 

(23) 
n 2p I (1 I ;  1; b) - 1 1; 1 ; i)) b = 1,2,  . . . , - - 1 .  

n2(m - ~ 2 )  PI 

The construction proceeds along similar lines: filling in the ith level of the Parisi hierarchy 
we find the same p(l)-dimensional tetrahedra with the same orthogonality conditions (22) 

Figure 2. The basis vecton 11: I :  b).  
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applying for any i 2 1 (only the case i = 0 (equation (18)) is different). This way we will 
have, altogether, p ( I ) ( R  + 1) independent basis vectors 

1 b = I ,  2 , .  . . , - - n 

PI 
11; i ; b )  i = 0, 1, . _ . ,  R and 

making up the k = 1 subfamily. They are each orthogonal to the first family, two of them 
belonging to different values of i are also orthogonal, but two such vectors with the same 
i and different b’s are not. 

It can now be shown again that the subspace spanned by the R + 1 vectors 11; i ;  b),  
i = 0, I , .  . . , R ,  for b f i e d  is an invariant subspace of an arbitrary ultrametric matrix. 
Therefore the linear combination 

R 

I f )  = c f i ( i )  11; i ; b )  
I =O 

with appropriately chosen amplitudes f l  (i), independent of b, will be an eigenvector. 
There will be R + 1 choices for these amplitudes, yielding R + 1 eigenvalues Al(m), 
m = 0,  1 , .  . . , R ,  in the k = 1 subfamily. Each of these will be p(l)-fold degenerate, 
according to the free choice of b .  

We now turn to the k = 2 subfamily. Some of the (k = 2)-type vectors with the i = 0 
Parisi level filled are shown in  figure 3.  These vectors will be labelled as 12; 0 a ,  b ) ,  where 
a = 1 , 2 , ,  . . , n / p l  shows which column of PI x pl-sized blocks has non-zero elements and 
b = I ,  2 ,  , , , , p I / p 2  shows which column of p z  x pz-sized blocks is distinguished inside 
column a .  The sum CiT/ 12; 0; a ,  b) must vanish again for any fixed a, otherwise it would 
be a linear combination of k = 0 and k = 1 subfamily type vectors. This orthogonality 
condition demands that we choose 

(24) PI A = l  B = l - -  
P2 

Figure 3. Some vectors of the k = 2 subfamily (i = 0). 



Block diagonalizing ultrametric matrices 

etc. 

etc. 

1579 

Figure 4. Some vectors of the k = 2 subfamily (i = I ) .  

leaving p 1 J p 2  - 1 independent vectors (spanning a tetrahedron again) for any fixed a. It 
is easy to see that with this choice the vectors 12; 0; a, b) will not only be orthogonal to 
each of the previous families (with k = 0, 1) hut they will also be orthogonal to the vectors 
12; 0 a', b') with a # a' and any b'. 

Some k = 2, i = 1 vectors are shown i n  figure 4. The orthogonality conditions now 
read 

B = -  2 - -  , 

A = l  2 1 ( 9 
We can go  on to build 12; i ;  a, b ) ,  i = 0, 1, , , , , R in a similar manner. The subspace of 
these vectors for fixed a and b will be closed under the action of an ultramehic matrix M. 
Thus 

5 f z ( i )  12: i ;  a ,  b)  
I =o 

will be an eigenvector with R + 1 choices for the amplitudes and with eigenvalues h2(m) ,  
m = 0, 1 , .  . . , R. We have seen that for a given a we have p l / p z  - 1 linearly independent 
choices for the basis vectors, while for different a's they are already orthogonal. That means 
we have ( n l p l )  ( p 1 J p 2  - 1). i.e. 

@ ( 2 ) = n ( i - ; )  

independent basis vectors for any i .  The total dimension of the k = 2 subfamily is thus 
p(2) (R + l),  and the multiplicity of the k = 2 eigenvalues is ~ ( 2 ) .  
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The generalization is now obvious. In the kth subfamily (k = 1,2, . . . , R + 1) we have 
vectors labelled by four indices: Ik ;  i; a,  b). This vector has non-zero elements only on the 
ith level of the Parisi hierarchy, and there only inside one column and row of blocks of size 
pk-1 x Pa-]. There are nlpr-1 such columns, and the label a = 1,2, . . , , n/pk-l shows 
which is the one in question. The vector components inside these blocks are all l’s, except 
inside a distinguished column and row of blocks of size pk x pk where they are7 

B E -  2- -  if i = k - 1  
(25) 

2 ( 
Pk-I 
Pk 

B = I - -  otherwise. 

The distinguished columns of pk x pk blocks are labelled by the last index, b = 

With the choice (25),  the vectors Ik; i ;  a, b)  are orthogonal to all the previous subfamilies 
with k- 1, k-2 ,  . . . etc, down to the first family. Within the kth subfamily vectors belonging 
to different i’s and a’s are also orthogonal, while those with a fixed k ,  i, a and different b’s 
make a (pk-] lpk - I)-dimensional hypertetrahedron. The number of linearly independent 
vectors for a given k and i will then be (njpk-I) (pk-ljpk - l), i.e. 

1>2*...,Pk-l/Pk. 

p ( k ) = n ( i - l ) .  Pk-I 

The bi-orthogonal set associated with the tetrahedral groups of vectors belonging to a given 
triplet k, i ,  a is 

h_ 

Ik; i; a ,  b) = - - 

where the weight g,*’ is defined as 

(27) 

For fixed k, a ,  b the R + 1 vectors [ k ;  i; a,  b ) ,  i = 0 ,1 ,  . . . , R, form an invariant subspace 
of any ultrametric matrix, so we will have eigenvectors of the form 

with amplitudes fk(i) independent of a and b. The corresponding eigenvalue equations 
will give R + 1 possible values for j i ( i ) ,  and the eigenvalues h,(k), m = 0, 1, . . . , R, will 
be p(k)-fold degenerate. Sometimes the second family is also called the anomalous or A 
family. 

t We take h e  opportunity here to m m 1  a misprint in equation (4) of [13]. The B for i = k - I was given as 
B = ;(I - px-,/pk) there, instead of the comd expression in (25). 
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So far, from the fn(n - I)-dimensional replica space we have split of f  the ( R  + I ) -  
dimensional invariant subspace of the first family, the ( R  + 1)-dimensional subspaces, & ( I )  
in number, of the k = 1 subfamily, etc, up to k = R + 1; that is, we have decomposed our 
linear space into 

( R  + k)-dimensional invariant subspaces plus the vast space, of dimension fn (n  - 1) - 
n ( R  + I), orthogonal to the first and second families. 

The third family. 
The third family, often called the replicon or R family, comprises everything remaining after 
splitting off the first two families. It is a most remarkable fact, and a direct consequence of 
the stringent conditions ultrametricity imposes upon a mahix, that the third family can be 
decomposed into invariant subspaces of dimension 1, i.e. directly into eigenvectors. This 
also means that the third family eigenvalues that, for large n, represent the overwhelming 
majority of all the eigenvalues can be obtained in closed form, in terms of the matrix 
elements, for any ultrametric matrix. 

The third family eigenvectors were given in a concise form in [13]. We provide a little 
more detail here which will become important when we invert the matrix M. 

The third family consists of several subfamilies labelled by three integers 

r = 0 , 1 ,  ..., R k , I = r + l , r + 2  , . . . ,  R + 1 .  

There will be several degenerate vectors in each subfamily. They will be labelled by three, 
five, or seven more indices, as the need arises. A common property of all third family 
vectors is that they have non-zero components only inside one single diagonal block of size 
p ,  x p,, which also gives the significance of the label r above. The labels k and I specify 
further structural details that are best displayed on a series of figures again. In the following 
we shall exhibit only that p ,  x p,-sized block over which the vector components are not 
all zero. 

Ther, k = r + I. I = r  + 1 subfamily. 
The structure of the nonvanishing block is shown in figure 5 .  These vectors take three 
further labels to specify them: lr; r + I ,  r + 1; a ,  b, c). The index a = 1,2,  . . . , n l p ,  shows 
which of the n / p r  diagonal p r  x p ,  blocks has non-vanishing elements. Inside this block 
all the components belonging to the diagonal pr+j x pr+l blocks vanish again. Of the off- 
diagonal pr+l x pr+l blocks, those belonging to two columns and rows are distinguished 
and a further distinction is made between the blocks at the crossing of a distinguished 
column and row and the rest. The indices b, c = I ,  2, . . . , pr/p,+,, b # c, label the 
two distinguished columns. In all, we then have three different vector components in this 
subfamily, as shown in the figure. 

Orthogonality to the previous families requires that 
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Figure S. The third family vector 1 1 ;  I + 1. I + 1: a. b. e ) .  Identical shading means identical 
components: a blank means TWO. b = 1. c = 3. 

It follows from (31) that the sum of vector components in each row should vanish, giving us 
two equations for the three numbers A ,  B ,  C, the third being determined by normalization. 
They work out to be 

A B = - pr+I 

Pr - 2P,+l 

A (32) 
C =  2P?+l 

( P r  - 2 P r + l ) ( P r  - 3 P r + l )  

2 Pr - 3 P r + 1  A =  
P?+,(Pr - P r + 1 )  ’ 

With this we have determined the eigenvectors with r ,  r + I ,  r + I completely. The 
corresponding eigenvalues will be written up in the next section. For a given position 
of the pr x pr block, i.e. for a given a, the orthogonality conditions (31) leave 
f(pr/pr+l) (pr/p,+l - 3) vectors linearly independent. This number, multiplied by n/p , ,  
the number of choices for a, gives the multiplicity of this class: 

r = O , I ,  . . . ,  R .  (33) 
I Pr -3Pr+l + ( r ; r +  I . r +  1) = p 1 

P,+l 

Eigenvectors with r ,  k > r + 1, I = r + I. 
An example is shown in figure 6. Such a vector is constructed as follows. One chooses a 
diagonal block of size p. x p,, labelled by a = I ,  2, . . . , n/p , ,  as before. Inside this block 
one chooses two columns and rows of blocks of size p,+l x pr+] .  say the bth and the cth, 
such that c > b (b = 1, c = 2 in figure 6). Inside the blocks in the bth column and row, one 
now chooses a strip of blocks of size pk-1 x Pk-1, say the dth, as shown in the figure. All 
the vector components outside this strip will be zero. Inside the strip one chooses a strip, 
the eth, of blocks of size p~ x pk. Finally the vector components A ,  B ,  C, D are arranged, 
as shown, according to whether they belong to the strip of width pk or whether they are 
outside, and also whether they belong to the cth blocks or not. 
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Figure 6. An eignevector of the class 1 1 ;  k > r + 2, I = r + 1: a ,  b, c .  d .  e) .  

Orthogonality to previous families again requires, as throughout the third family, that 
the sum of components in each row vanishes. This immediately gives 

B = -  P k  A 

c = - Pr+1 

Pk-I - Pk 

A 
Pr - 2P,+l 

(34) 
A PkPr+I D =  

(pk-l  - Pk)(Pr - 2Pr+l) 

2 Pr -2Pr+l 
A =  Pr+l (Pr - Pr+l)  (L Pk - 3 

for the components of a normalized vector of this class. 

number of linearly independent vectors of this kind is 

w ( r ; k ,  r + 1) = f n 

Considering the various choices for the parameters a ,  b, c ,  d ,  e ,  one finds that the total 

k = r + 2 ,  r + 3 , .  . . , R + 1 .  (35) 

The subfamily r ;  k = r + 1,1 > r + 1 is obtained by the same construction but with 
c < b: this subfamily will be similar to the r ;  k > r + 1,1 = r + 1 subfamily in every 
respect, but it will be orthogonal to it. 

Eigenvectors with r, k > r + 1,1 > r + 1. 
The construction of these vectors is shown in figure 7. It begins again by choosing one 
diagonal block of size p ,  x p , ,  labelled by a. This can be done in n / p ,  different ways. 
Next, inside this block one chooses two symmetrically positioned off-diagonal blocks of 

Pr - 2P,+l 
(:k  p k y l )  P,+I 
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Figure 7. The construction of an eigenvector with r. k z I i 1.1 > r + 1. The shucture of the 
vector is shown in the three stages of hner and finer resolution The block with indices c. b in 
( a )  is obtained by reflection to the diagonal from block b, C .  

size p,+l x P ~ + ~ .  This takes two indices: b, c = I ,  2, .  . . , ~ , / p , + ~ ,  and the number of 
independent choices is f ( p , / p , + l )  ( p r / p r + l  - I), because of the symmetry of the matrix 
representing the eigenvector. Now the off-diagonal P , + ~  x p,+l block above the diagonal 
is cut into rectangles of horizontal size P I - 1  and vertical size pk-I and the one below the 
diagonal is cut similarly with the horizontal and vertical dimensions exchanged. 

One of these rectangles is chosen, which again takes two labels: d = 
1 , 2 , .  . . , pr+t/pI-- l .  and e = 1,2.. . . , Pr+l/pk-I. and can be done in P ~ + 1 / ( p l - l p k - l )  
ways. Their structure is 
shown in figure 7(c) ,  and can evidently be characterized by two further indices f = 
1,2, . . . , p , - l / p ~ .  and g = 1,2,. . . , p k - , / p k .  These vectors are orthogonal to each other 
in all the indices except for f and g. For fixed f the set with different g's forms the 
usual tetrahedron again, and the same is true for fixed g in  the f's ,  so we are left with 
(pk- l /pk  - 1) x ( p l - l / p l  - 1) independent choices for f and g. All these taken together 
give a multiplicity 

We have non-zero components only inside these rectangles. 

p ( r ;  k ,  1 )  = fa ( p ,  - p,+l)  - - - - - - ( d t  P k y l )  (dl P l y l )  (36) 
( k , l  = r + 2 , r  + 3 , .  . . , R + I )  

while the usual orthogonality conditions (the sum of vector components in each row and 
each column vanishes) give us the following values for the components of a normalized 
vector of the r ,  k > r + 1 , 1  > r + 1 type: 

B E -  p k  A 

c = -  P' A 

Pk-I  - P k  

(37) 
PI-1 - PI 

A PkPl 

(Pk-I - P k ) ( P l - l  - PI) 

A2 = - - - - - - 

D =  

( j k  P k y l )  (:I Pl: l )  ' 
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With this we have given a full description of the third family eigenvectors. To show 
that these forms are indeed reproduced under the action of an ultrametric matrix takes, of 
course, a lot of algebra. It is impossible for us to go into details on this, but we think 
a little experimentation in a simple special case like R = 1 will convince the reader that 
the proof i s  quite straightforward though certainly not very short. As we have seen, there 
is a high degree of degeneracy within each subfamily ( r ;  k ,  1 ) .  These subfamilies are all 
orthogonal to each other (and also to the first and second families, of course), and some 
of the degenerate vectors within a given ( r ;  k ,  I )  subfamily are also orthogonal, but some 
form the by now familiar tetrahedral sets in more than one index. It would not be difficult 
to orthogonalize these vectors, or, alternatively, to construct bi-orthogonal sets to them. 
We refrain from doing both: the loss in symmetry would be considerable and the gain 
virtually nothing. The only occasion when we might need a properly orthonormalized set 
is when later we construct the ‘replicon’ components of the inverse of M from the spectral 
resolution. It will turn out, however, that the orthogonalization can be circumvented even 
there and the ultrametric symmetries of M (and of its inverse) will allow us to deduce 
the full contribution of the whole ( r ;  k .  I )  subfamily to the inverse from the knowledge of 
a single vector belonging to that subfamily. This vector will be called the representafibe 
vector of the subfamily. 

We can choose any of the p ( r ;  k ,  I )  degenerate vectors to be the representative vector. 
Suppose we have made our choice. Some of the vectors in the ( r ;  k ,  I )  subfamily will 
be orthogonal to the selected vector 6om the beginning. These will, as a rule, have zero 
components where the selected vector has non-zero ones; in particular, they will have zeros 
where the components we called A’s in the description of the third family vectors, i.e. those 
in the darkest shaded areas in the figures, are to be found in the selected vector. Now 
consider the vectors which are not orthogonal to the selected one. In order to orthogonalize 
them to the representative vector we form some linear combinations. Our key observation 
is now that, due to the defining properties of the third family vectors (namely, that the sums 
of vector components in each row are zero), any linear combination that is orthogonal to 
the representative vector will have zero components where the representative vector has its 
components A.  The proof of this will also be left as an exercise to the reader. 

The last issue to be settled in this section is the total multipkity of our basis vectors. 
In the first two families we found n(R  + I )  independent basis vectors. In the subfamilies 
( r ;  k ,  I ) ,  for fixed r ,  there are a total of 

R+I 

p ( r ;  k ,  1 )  = $(p ,  - P ~ + I  - 2) (38) 
h,l=r+l 

independent vectors. This summed over r gives the total number of basis vectors in the 
third family: 

5 i n ( p ,  - p,+l - 2) = in(n - 2R - 3). (39) 
r=O 

Added to n(R  + 1) this gives i n ( n  - I ) ,  the dimension of replica space. Our set of basis 
vectors is therefore complete. 

4. The block-diagonal form of ultrametric matrices 

Having constructed a complete set of basis vectors we can build a matrix S with columns 
made of these vectors and transform M to this new basis by 

M = S-‘ MS . (40) 
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S is-not an orthogonal transformation (because the basis vectors are not all orthogonal), 
so M will not be symmetric. The rows of the inverse S-’ in the first family sector will 
be made of the bra vectors corresponding to the first-family-like basis vectors 10; i); in 
the second family sector they will be the bi-orthogonal vectors given in (27). In the third 
family sector we do not really need to construct the matrix S-I at all, since there the 
basis vectors are the eigenvectors themselves. Since the various families and subfamilies 
were conshucted in such a way that they are invariant subspaces of M ,  the transformed 
matrix h? will have a block-diagonal form: along the diagonal we will have a string of 
n ( R  t I )  x (R + 1) matrices, the first corresponding to the first family, the next p(1) 
identical matrices corresponding to the k = 1 subfamily in the second family, etc, through 
p ( k )  identical blocks for the kth subfamily up to k = R + 1. This string of matrices will 
be followed by the string of the third family eigenvalues coming in groups of p ( r ;  k ,  1) 
identical numbers corresponding to the subfamilies ( r ;  k ,  I ) .  

The third family or replicon eigenvalues are obtained as a byproduct of checking that 
the third family vectors given in the previous section are eigenvectors indeed. In the ( r ;  k ,  1)  
subfamily one obtains the closed expression 

r = 0 , 1 ,  ..., R ,  k , I = r + l , r + 2  , _ _ .  , R + 1  

giving the replicon eigenvalues directly in terms of the matrix elements and of the p ’ s  
characterizing the structure of M. Equation (41) has been written up already in [13]. 

The ( R  + 1) x ( R  t 1) diagonal blocks of fi will be labelled by k = 0, I ,  . . . , R t 1 
as M‘”, k = 0 corresponding to the first family, k z 0 to the subfamilies in the second 
family. The matrix elements of M(” can be obtained by sandwiching M between two first 
family vectors 

~ $ 1  = (0; rlMIO; s) 142) 

those of M(k) by sandwiching M between a second family vector and one from the bi- 
orthogonal set given in (27): 

M:,:? = (k ;  r ;  a, blMlk; s; a, b)  (43) 

and can really be obtained again as byproducts when verifying the invariance of the various 
subfamilies under the action of the matrix M .  

We can therefore simply state the result 

Of the symbols appearing here 8, and g!” have already been defined in (16) and (28), 
respectively. 8% is the Kronecker symbol, while A:k) is 
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The diagonal part A(k. r )  is related to the third family eigenvalues: 

(Possible empty sums here and in the following are understood to be zero. For k = 0, terms 
with MZ,-] may occur in the above formulae. They are, by definition, zero too.) 

With this the matrix elements M$) in the new representation have been expressed in 
terms of the matrix elements in the original representation. The problem of finding the 
eigenvalues of M in the first two families has thus been broken down into the problem of 
finding the specfrum of each of the M‘”)’s. As we have already noted, due to the non- 
orthogonality of the transformation s, the M(’)’s are not symmetric. Using the symmetries 
between the various components of M as described in section 2. one can show, however. 
that, although we have given the expressions for both k ( r ,  s) and &(s, r )  in the various 
cases for completeness, the kernel & is, in fact, symmetric. Therefore, the asymmetry 
of M(’) is carried solely by the factor g f )  in (44), and we can, if we wish, reduce the 
eigenvalue problem of M(‘) to that of the manifestly symmetric matrix 



This is a set of R + 1 homogeneous linear equations for any given k = 0,1, . . . , R + 1. 
(In the first family, i.e. for k = 0, only the equation with r > k - 1 applies. with the third 
term on the LHS discarded.) The solutions for the fk’s give the amplitudes mentioned in 
the preceding section, while the A(k)’s are the corresponding eigenvalues. 

It is evident from the definition that the space of ultrametric matrices (belonging to 
the same series pa,  p1, , , . , PR) is closed under addition. That it is also closed under 
multiplication is easiest to see from the existence of the common similarity transformation 
S that brings any two such mawices to block-diagonal form simultaneously. 

Suppose we are given two ultrametric mawices M and M‘, with the associated kernels 
Kk and Ki  and replicon eigenvalues A R  and AR‘ from which we have the corresponding 
A’s as given in (46). Then in the block-diagonal representation of the product MM‘ we 
will find for the diagonal blocks in the LA sector: 

where we have used that by (16). (28) and (45) 

whereas in the R sector we will evidently find the product of the replicon eigenvalues: 

h(r; k ,  l)h’(r; k .  I ) .  

In particular, if M’ is the inverse of M, we have 

1, so from (54) we get 

(56) 

M ~ , ~ ) M ~ ~ )  = 82 and A(kq r)A‘(kq r )  = 
R 

1=0 

R 
(57) i C A ! X ’ K ~ ( r , f ) K ~ ( t , s ) + A ( k , r ) K ~ ( r , s ) + A ‘ ( k , s ) K x ( r , s )  1 = O .  

f=O 
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For a given M, i.e. for a given Kk and h ( k ,  r ) ,  this is an equation for the kernel KL of 
the inverse matrix. In the general case equation (57) is still a matrix equation which is 
typically difficult to solve, though (57) certainly has the merit of reducing the problem of 
the inversion of a fn(n  - 1) x +n(n - I)-dimensional matrix to that of inverting R+2 much 
smaller mavices (corresponding k = 0, 1, . . . , R + 1 in (57)) of size ( R  + 1) x ( R  + 1).  In 
some important special cases, however, further progress can be made and both the solution 
of the eigenvalue equations (53) and the inversion of the matrix M can be carried through 
to the end [12]. 

Coming back to (57) let us assume now that we have somehow succeeded in solving it 
for KL. With this the inversion of A4 is, however, not yet completed, because normally we 
need the inverse in the original Cartesian coordinate system, i.e. we need the components 
of M‘ given the kernel K;. This means we have to invert the formulae (47t(52), or, to put 
it even more simply, we have to turn (40) around like 

M = S k S - ‘  . (58) 
In the LA sector this is a standard operation: we have all the basis vectors and their 

bi-orthogonal counterparts so that we explicitly know the corresponding blocks in S and 
S-’. This is not the case in the R sector where we have neither orthogonalized nor bi- 
orthogonalized our basis vectors. In the direct transformation, from M to A?, this did not 
cause a problem, because, the thud family bFis vectors being eigenvectors, we knew in 
advance that the corresponding ‘blocks’ of M would be the eigenvalues themselves. In 
the inverse transformation, from fi to M, however, we would definitely need the missing 
blocks in S-’ in order to determine the contribution of the replicon family to the various 
components of M. It is at this point that the concept of the representative vector introduced 
in the previous section becomes important. We do not think we should dwell upon how 
the blocks of the three matrices in (58) have to be multiplied in the sector where they are 
known. We have to explain, however, how the replicon contribution to (58) can be obtained 
from the representative vectors without actually knowing the corresponding block in S-’. 
The appendix is devoted to this problem. 

In what follows we will state our results for the nine different types of matrix elements 
of M discussed in section 2 in terms of the matrix elements of the block-diagonal form I@. 
In each case we shall give the result in two different forms: first as a sum of two terms, 
one coming from the LA sector, the other from the replicon, and second, in a form where 
some most remarkable cancellations between these two have been effected. In the discrete 
case, where n, R,  and all the pk’s are integers, these cancellations may seem coincidental. 
We note, however, that in the continuous limit they acquire a fundamental importance [13]. 

In order to display these cancellations we partition the third family multiplicities as 
follows: 

(59) p ( r ;  k . 0  = fire&; k ,  0 + p s i o g k ;  k ,  0 
where 
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and prcg(r; k ,  1)  for k ,  I > r + I is the full p ( r ;  k ,  I )  itself, as given in (36) .  so that 

p,in6(r; k ,  I )  = 0 k ,  I > r + 1 . 654) 

In equations (61) and (63) ~ ( k )  is the second family multiplicity. In the discrete case 
the subscripts 'regular' and 'singular' have no particular significance; in the continuous 
limit, however, psin6 will be associated with terms that become meaningless but disappear 
from the theory due to the cancellations mentioned above. 

We now list the results: 

where the first term is the LA and the second the R contribution as announced. Substituting 
(44) for M(k)  and splitting p as p = pEg +psing we see that the A ( k ,  r )  term coming from 
the LA cancels the psing contributions from the R family exactly. So we have the alternative 
form: 

Similarly, 

In the special case t = r of the above, things work out slightly differently: 

so that, as we see, the A term coming from the LA now cancels the whole replicon 
contribution, not just the one with ~ L J " ~ .  
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The next item to be considered is a component of M with different upper indices, so 
that there is no replicon contribution to it: 

Now we turn to the matrix elements of the third kind: 

Note that this holds even for r = s, because 

therefore the diagonal part A in M") never contributes. Neither does the replicon, because 
the upper indices are larger than the lower ones in here. 

The next four items are off-diagonal in the upper indices, so they do not receive 
contributions from the replicon family: 
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In the next two cases again a complete cancellation takes place between the A term in 
the LA and the replicon: 

Finally, in the last type of component the A term from the LA cancels the psins term 
in the R. 

(76b) 

As we have mentioned, in (65)-(76) the formulae denoted (a) give the hue patition of 
the contributions between the LA and R families. If anyone tried to reproduce these results, 
they would inevitably get them in this form, and we give them here partly as signposts. In 
most applications the origin of the terms is completely immaterial, however, so that when 
using these formulae, one will clearly apply the (b) forms, where the cancellations have been 
performed. The names one attaches to these term are also largely a matter of convention: 
in the papers (14,151, where analogous formulae were derived for the propagators, two of 
us used the name LA for the first terms and the name R for the second terms in the (b) 
forms. 

We also see that there is nothing mysterious about the cancellations: the diagonal matrix 
elements of M(‘) contain the replicon eigenvalue and this piece partially or completely 
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cancels the contribution from the R family. In [I31 two of us, discussing the importance 
of these cancellations in the context of the propagators, made the remark that a certain 
asymptotic relation between the second and third family eigenvalues was a necessary 
condition for the cancellations to work. Although the asymptotic relation between the 
eigenvalues was certainly valid in the specific example discussed there. and may also be 
valid in more general situations, we can clearly see that it has nothing to do with the 
cancellations: these are a purely ‘kinematic’ effect, depending solely on the ultrametric 
geometry and on no further details of the theory. 

To conclude, we make an additional remark. Before presenting the formulae (65x76) 
we gave a sketchy indication (with some details to be added in the appendix) as to how 
they can be obtained, which is, of course, not necessarily the most economic way that they 
can be verified once known. Equations (65)<76) are the inversion of (47H52) and of (41). 
The simplest way to check them is by direct substitution. 

Having established the inverse relations between the matrix elements and the kernel we 
can now summarize the steps one has to follow in order to invert an ultrametric matrix. 
First one has to determine the kernel and the replicon eigenvalues of the matrix by (41) 
and (47)-(52). To get the replicon eigenvalues of the inverse matrix is trivial; they are 
the reciprocal of the original replicon eigenvalues. To obtain the new kernel requires the 
solution of (57). This is the hard core which remains to be cracked after the layer controlled 
by ultrametricity has been peeled off. To find the new kernel requires concrete knowledge 
of the matrix elements and as such it is outside the scope of the present paper. Assuming 
the new kernel has been found, one finally obtains the elements of the inverse matrix via 
(65)-(76). 
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Appendix. 

Our purpose here is to sketch the derivation of the repticon contributions to (65)<76) 
through what we called the representative vector. 

Equation (58),  written out in the original, Cartesian coordinates, reads 

- 
where l i )  now means any of the fn(n- 1) new basis vectors, and I j )  are their bi-orthogonal 
counterparts. 

We are interested here in the contribution of the replicon family to (AI) only, i.e. in  the 
partial sum, to be denoted by M&+ where i and j are restricted to the replicon sector. 
But M is diagonal in that sector, M i j  = his:, so we have 
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Now let a fl p = r. Then the replicon vectors li) contributing to (A2) have to be such that 
they have non-zero components on the rth level of the Parisi hierarchy. From the description 
of these vectors given i n  the main text we know. however, that their components on every 
other level are then identically zero, and furthermore even on the rth level their non-zero 
components are concentrated inside a single block of size p ,  x p r .  Evidently. the component 
(up) must belong to this block. Although we have not actually determined the bi-orthogonal 
set rl (and our purpose here is to show that we do not need to, either), it is obvious that Cl 
will share the above properties of [i): it will have non-zero components on the rth level, 
and there inside the same p,  x p,  block only. It follows that (yS) must belong to the same 
block and 01 n p = y n S = r. 

With this we have identified the set of replicon vectors which, for a given a, p ,  y ,  6,  
can give a non-zero contribution to M&,b. This set can be decomposed into orthogonal 
classes, labelled by the triplet of integers r, k ,  1 ( k ,  1 3 r + I), as explained in section 3. In 
a given class (r. k ,  1) we still have several non-orthogonal replicon vectors and, in principle, 
they all contribute to (A2). What we wish to show is that, in fact, one can choose a single 
vector from each class (r, k ,  1 )  in such a way as to exhaust the contribution of the whole 
class. We have called this vector the representative vector of the class. 

The choice of the representative vector is not unique. It is best to choose it such that 
the component (yS) belong to the ‘darkest’ block, where the vector has  the components 
A (consult figures 5-7). Now, as we have already pointed out in  section 3, the subspace 
orthogonal to the representative vector thus chosen is spanned by vectors that have zero 
components over this ‘A-block‘. In particular, if lr; k ,  I )  is the representative vector of the 
class (r, k ,  I )  then the bi-orthogonal counterparts of all the other members of the class will 
lie in the space orthogonal to lr; k ,  l ) ,  hence their components in the ‘A-block‘ where also 
the pair (yS)  resides must necessarily be zero and thus their scalar product with the unit 
vector [ y S )  will vanish. Therefore. the only contribution from the class (r, k ,  I )  comes from 
the representative vector, indeed. 

The summation in (A2) then runs over the representative vectors only, so we can rewrite 
(A2) as 

- 
We now decompose ( r ; k 8 1 1  into components parallel and orthogonal to Ir; k , l ) .  The 
orthogonal component will not contribute to (A3) for the same reasons as above. So we 
are lefi with the parallel component only, which, in view of (r; k ,  [ [ r ;  k ,  1) = 1 and of the 
normalization of lr; k * l ) ,  is nothing but the representative vector itself. So we can finally 
write 

_c 

Although the above consideration is quite trivial really, one may find it mystifying that 
it is possible to reconstruct a matrix from selecting a single vector from each class of its 
eigenvectors which are non-orthogonal within the class. As it transpires from the proof. 
the key factor is that the subspace orthogonal to the representative vector is composed of 
vectors having vanishing components over the ‘A-block’, and this in turn hinges upon the 
common property of all replicons, namely that the sum of their components in each row 
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is zero. A little more reflection will show, however, that the underlying reason is that the 
matrix M$l.y6 does not depend on 01, i?, y and S separately, only on the various overlaps 
formed out of these indices, therefore the puzzling property of the representative.vectors 
carrying all the information about M R  can be directly linked to the ultrametric symmetries 
of M .  

As an illustration of the use of (A4), let us calculate the diagonal components M~p,ep.  
There will be three kinds of terms contributing to (A4): 

(i) k = I  = r  + I :  

where use has been made of ( 3 2 )  and (33)  
(ii) k 2 r + 2 ,  1 = r + 1: 

where we have used ( 3 4 )  and (35) .  
(iii) k > r + 2, 1 2 r + 2: 

see (36) and (37). 
Substituting (A5), (A6) and (A7) back into (A4) we find 

which is precisely the second (replicon) term quoted in (65a). The replicon contributions 
to (66a), (67a), (74a). (7%) and (76a) can be worked out similarly. 
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